

Jurnal Cakrawala Bahari

Journal homepage: http://jurnal.poltekpelsumbar.ac.id/index.php/jcb

THE EFFECT OF WORK STRESS ON CREW PERFORMANCE ON THE FSO SHIP GAGAK RIMANG PT EQUINOX BAHARI UTAMA

Danty Saajidah Putri Yesa¹, Juliandri Hasnur² and Dody Efrianto³

- ¹Politeknik Pelayaran Sumatera Barat
- ²Politeknik Pelayaran Sumatera Barat
- ³Politeknik Pelayaran Sumatera Barat

Article Info

Article history:

Received Jun 12th, 201x Revised Aug 20th, 201x Accepted Aug 26th, 201x

Kevword:

Work Stress Crew Performance Maritime Industry Work Environment Quantitative Method **Human Resource Management**

ABSTRACT (11 PT)

This study aims to determine whether stress affects crew performance and to understand the nature of that influence, particularly among crew members serving on the FSO Gagak Rimang vessel operated by PT Equinox Bahari Utama. In the maritime industry, human resources (HR) play a crucial role in ensuring vessel operations run smoothly and in achieving company objectives. Understanding the extent to which stress impacts crew performance is essential, as optimal performance is necessary to maintain operational efficiency. In this study, stress was measured using indicators such as workload, leadership attitude, working hours, conflict, communication, and job authority, while performance was assessed through indicators including quantity, quality, teamwork, responsibility, and initiative. A quantitative research method was employed, with statistical analysis conducted using SPSS version 27. The results revealed a significant negative relationship between stress and crew performance, with a correlation coefficient of 0.883, indicating that higher levels of stress are associated with lower performance. Simple regression analysis showed that stress accounts for 77.9% of the variation in crew performance, while the remaining 22.1% is influenced by other factors not examined in this study. Therefore, it can be concluded that stress has a significant and negative impact on the performance of crew members at PT Equinox Bahari Utama. Based on these findings, the company is encouraged to consider implementing measures to manage crew stress in order to enhance overall performance.

© 2021 The Authors. Published by Politeknik Pelayaran Sumatera Barat. This is an open access article under the CC BY-NC-SA license BY NC SA (https://creativecommons.org/licenses/by-nc-sa/4.0

Corresponding Author:

Danty Saajidah Putri Yesa, Affiliation

Email: Email: dantysaajidah00@gmail.com

Introduction

The maritime work environment, particularly aboard Floating Storage and Offloading (FSO) units, presents distinct psychological and operational challenges for seafarers. Prolonged isolation, routine monotony, high-pressure operational demands, and limited social interaction are inherent aspects of life onboard FSOs and constitute significant sources of occupational stress. The FSO Gagak Rimang, operated by PT Equinox Bahari Utama, exemplifies such a working environment. Stress among crew members may stem from internal factors, such as physical fatigue and interpersonal conflict, as well as external stressors, including adverse weather conditions and stringent production targets. These conditions underscore the need for a comprehensive understanding of how stress impacts crew performance.

This study seeks to examine the influence of work-related stress on three critical indicators of crew performance: the quantity of work completed, the quality of work delivered, and the level of initiative demonstrated by crew members. While PT Equinox Bahari Utama has implemented several stress mitigation initiatives—such as communication access with families, wellness activities, and routine briefings—the persistence of psychological strain among the crew suggests potential gaps between existing interventions and the lived realities at sea. Given the essential role of human performance in maritime operations, assessing the psychological dimensions of crew welfare is vital.

The present research is situated within the specific context of the FSO Gagak Rimang and aims to establish a clearer empirical linkage between stress levels and operational output. Drawing upon observational data, performance evaluations, and limited crew interviews, this study endeavors to elucidate the systemic effects of stress on maritime labor. Furthermore, it advocates for the integration of proactive mental health strategies into safety and quality management frameworks. By doing so, it contributes to the broader discourse on sustainable maritime human resource practices and operational resilience.

Materials and Methods

This study employed a quantitative method with a total sampling approach. The population and sample consisted of 36 crew members of PT Equinox Bahari Utama who work aboard the FSO Gagak Rimang vessel. By using total sampling, all members of the population were included as the sample, making the results more representative and reflective of actual conditions in the field. Data collection was carried out through the distribution of questionnaires using a 5-point Likert scale, designed to measure variables relevant to the research topic. This scale enabled the collection of measurable data regarding the crew's perceptions and experiences, particularly related to their levels of stress and work performance. This approach allowed the researcher to obtain comprehensive and objective information aligned with the study's objectives.

Result and Discussion

Validity Test

Before the questionnaire was used in this study, a validity test was conducted to ensure the reliability of the instrument. The test was administered to crew members of PT Equinox Bahari Utama assigned to the FSO Gagak Rimang vessel. A question item was considered valid if the calculated r-value exceeded the r-table value of 0.329, based on 36 respondents (df = 34).

- If r count > r table, the item is valid.
- If r count < r table, the item is invalid.

The results of the validity test are as follows:

Table 1 Results of Validity Test of Variable X

Code	Corrected Item- Total Correlation (R Hitung)	Table R	Validity	
X1	.864	.334	Valid	
X2	.787	.334	Valid	
Х3	.808	.334	Valid	
X4	.738	.334	Valid	
X5	.822	.334	Valid	
X6	.823	.334	Valid	
X7	.868	.334	Valid	
X8	.917	.334	Valid	
X9	.825	.334	Valid	
X10	.685	.334	Valid	
X11	.781	.334	Valid	
X12	.845	.334	Valid	
X13	.838	.334	Valid	
X14	.785	.334	Valid	
X15	.834	.334	Valid	
X16	.780	.334	Valid	
X17	.812	.334	Valid	
X18	.752	.334	Valid	

From table 1, all calculated r data are greater than r table, namely 0.329, so all statements on variable X are considered valid.

Table 2 Results of Validity Test of Variable X

Code	Corrected Item- Total Correlation	Table R	Validity
Y2	.505	.334	Valid
Y4	.806	.334	Valid
Y5	.576	.334	Valid
Y6	.495	.334	Valid
Y7	.688	.334	Valid
Y8	.609	.334	Valid
Y9	.520	.334	Valid
Y10	.592	.334	Valid
Y11	.684	.334	Valid
Y12	.554	.334	Valid
Y13	.763	.334	Valid
Y14	.486	.334	Valid
Y15	.458	.334	Valid

From table 2, all calculated r data are greater than r table, namely 0.3334, so all statements on variable Y are considered valid.

Reliability Test

An instrument is considered reliable or consistent if the Cronbach's Alpha value is greater than 0.60. In this study, instrument reliability was tested using the Cronbach's Alpha method. If the value is below 0.60, the questionnaire is deemed unreliable.

Table 3 Result of Reliability Test of Variable X

Reliability Statistics

Cronbach's	N of Itama
Alpha	N of Items
.969	18

It can be concluded that the Cronbach's Alpha value is 0.969 > 0.60, so the questionnaire for variable X is declared reliable.

Tabel 4 Result of Reliability Test of Variable Y

Reliability Statistics

Cronbach's Alpha	N of Items
.850	13

It can be concluded that the Cronbach's Alpha value is 0.850 > 0.60, so the Y variable questionnaire is declared reliable.

Normality Test

The normality test is used to determine whether the data are normally distributed, as a good regression model requires normally distributed residuals. In this study, the Kolmogorov-Smirnov test was conducted using SPSS version 27. Data are considered normal if the significance value is greater than 0.05, indicating that the null hypothesis is accepted.

Table 5 Result of Normality Test

One-Sample Kolmogorov-Smirnov Test

			Unstandardized
			Residual
N			36
Normal Parameters ^{a,b}	Mean		.0000000
	Std. Deviation		2.29430306
Most Extreme Differences	Absolute		.143
	Positive		.143
	Negative		137
Test Statistic			.143
Asymp. Sig. (2-tailed) ^c			.060
Monte Carlo Sig. (2-tailed) ^d	Sig.		.061
	99% Confidence Interval	Lower Bound	.054
		Upper Bound	.067

- a. Test distribution is Normal.
- b. Calculated from data.
- c. Lilliefors Significance Correction.
- d. Lilliefors' method based on 10000 Monte Carlo samples with starting seed 2000000.

Title 5

It can be concluded that the significance value of 0.06 > 0.05, meaning that Ha is accepted. This means that the data is normally distributed.

Linearity Test

The linearity test checks whether the independent and dependent variables have a significant linear relationship. Using SPSS version 27, the relationship is considered linear if the significance value is below 0.05.

Table 6 Linearity Test Result

			Sum of		Mean		
			Squares	df	Square	F	Sig.
Kinerja *	Between Groups	(Combined)	788.972	25	31.559	6.861	.002
Stres		Linearity	650.738	1	650.738	141.465	.000
		Deviation from Linearity	138.234	24	5.760	1.252	.369
	Within Groups		46.000	10	4.600		
	Total		834.972	35			

The significance value is 0.369, which is greater than 0.05, indicating a linear relationship between variable X (work stress) and variable Y (crew performance).

Heteroskedasticity Test

The Glejser test is used to detect heteroscedasticity, or unequal residual variances, in a regression model. This test ensures the model meets classical assumptions for accurate interpretation. If the significance value (Sig.) is greater than 0.05, there is no heteroscedasticity. If Sig. \leq 0.05, heteroscedasticity is indicated.

Table 7 Heteroskedasticity Test Result

			Coefficients	a		
		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	3.511	1.029		3.412	.002
	Stress	029	.017	284	-1.725	.094
a. D	ependent Vari	able: ABS_RES				

Sig. value 0.094 which is greater than 0.05, so it can be concluded that there is no heteroscedasticity in the data.

Hypothesis Test

The decision rule is: if the significance value < 0.05, then Ha is accepted and H0 is rejected. Conversely, if the significance value > 0.05, then H0 is accepted and Ha is rejected.

Table 8 Hypothesis Test Result

Correlations								
	Stress Kinerja							
Stress	Pearson Correlation	1	883**					
	Sig. (2-tailed)		.000					
	N	36	36					
Klnerja	Pearson Correlation	883**	1					
	Sig. (2-tailed)	.000						
	N	36	36					

^{**.} Correlation is significant at the 0.01 level (2-tailed).

The Pearson Correlation result is 0.883 with a significance value greater than 0.05, meaning Ha is accepted and H0 is rejected. The correlation level between the two variables is very strong. The negative sign indicates an inverse relationship—when variable X (work stress) increases, variable Y (performance) decreases, and vice versa.

Simple Linear Regression

Table 9 Simple Linear Regression Result

Coefficients^a Standardized **Unstandardized Coefficients** Coefficients Std. Error Beta Sig. 65.691 37.502 (Constant) 1.752 .000 TOTAL_X -1.317 .029 -.883 -10.959 .000

Linear Regression Equation

$$Y = a + bX$$

 $Y = 65691 + (-1.317X)$

Based on the equation:

- 1. The constant value (a) is 65.691, meaning the crew's performance is 65.691 when stress is zero.
- 2. The coefficient (b) of work stress (X) is -1.317, indicating that for every increase in stress, performance decreases by 1.317.

Direction of Relationship

The regression coefficient is negative (-1.317), meaning each increase in stress (X) leads to a decrease in performance (Y).

Effective Contribution

The coefficient of determination (R²) is 0.779, indicating that work stress (X) contributes 77.9% to the crew's performance (Y).

Discussion

The validity test confirmed that all questionnaire items were appropriate and effectively measured the concepts of stress (X) and performance (Y). The reliability test also showed that both variables met the internal consistency threshold, indicating that the instrument used was dependable. The normality test confirmed that the data followed a normal distribution, supporting the assumptions for regression analysis. The linearity test showed a clear linear relationship between work stress and crew performance, justifying the use of linear regression for further analysis. The heteroscedasticity test results suggested that the variance of the residuals remained constant, indicating that the regression estimates were reliable. Furthermore, the hypothesis testing revealed a significant negative relationship between stress and performance, meaning that higher stress levels tend to reduce the performance of the crew. Regression analysis showed that stress negatively affects crew performance. A rise in stress leads to a measurable decline in work outcomes. The strength of the correlation between both variables was high, and the proportion of performance influenced by stress was dominant, proving that stress is a major factor affecting crew effectiveness.

These findings indicate that various stressors—such as workload, leadership, work hours, interpersonal conflict, and unclear job roles—contribute to a decline in performance indicators like productivity, quality, teamwork, responsibility, and initiative. This demonstrates the urgent need for

a. Dependent Variable: Kineria Y

Title 7

effective stress management practices in the maritime sector. This study aligns with previous research, including Ji An et al. (2020) and Supangat & Marsudi (2024), both of which found that job stress significantly reduces satisfaction and productivity, particularly in seafaring roles. Such consistency reinforces the credibility of the results and highlights the broader relevance of this issue. Observations at PT Equinox Bahari Utama showed that the company has implemented several programs to help reduce stress, such as the EBU In-House Training in partnership with the Indonesian Crew Union (KPI), which includes sessions on mental health and emotional resilience. These programs also involve team-building activities in locations like Bali and Magelang to foster camaraderie and alleviate stress. However, these efforts have yet to produce significant, long-term impact. While commendable, the company's current approach lacks consistent follow-up. Therefore, routine counseling and structured mental health support are recommended to strengthen existing programs and create a sustainable system for managing crew stress effectively.

Conclusion

Based on the results of the study, it can be concluded that stress has a significant negative impact on the performance of the FSO Gagak Rimang crew. The instruments used in the research were proven to be valid and reliable, and they met the requirements for regression analysis, including normally distributed data, linear relationships between variables, and the absence of heteroscedasticity. The findings indicate that the higher the level of stress experienced by the crew, the lower their performance in terms of quantity, quality, teamwork, responsibility, and work initiative. Although PT Equinox Bahari Utama has made various efforts to reduce stress—such as technical and psychological training, team-building activities, and social programs—the impact of these measures is still considered suboptimal. Therefore, the company is advised to re-evaluate the effectiveness of its current programs and develop additional, more targeted strategies, including ongoing psychological support, improved communication, and better workload and time management, in order to reduce stress and comprehensively enhance crew performance.

Acknowledgement

The author would like to thank Mr. Budi Riyanto, S.E., M.M., M.Mar.E., Director of Politeknik Pelayaran Sumatera Barat, for providing institutional support throughout the study. Gratitude is also extended to Mr. Naf'an Arifian, S.Psi., M.Sc., Head of the Marine Transportation Study Program, for his motivation and guidance. Special thanks to Mr. Juliandri Hasnur, S.ST.Mar., M.M. and Mr. Dody Efrianto, S.Si., M.Sc., for their valuable time and supervision during the writing process. The author also appreciates Mr. Langandriansyah Dwi Yatno, S.E., M.M. and Mr. M. Kurniawan, M.Pd.I for their insights during the thesis examination. Acknowledgement is given to all lecturers, mentors, and the academic community of Politeknik Pelayaran Sumatera Barat for their support. Deep gratitude goes to the author's family for their continuous encouragement. Sincere thanks to Mrs. Indah Yulianti, Director of PT Equinox Bahari Utama, for permitting the research and internship, as well as to the staff and colleagues at the company for their support and cooperation.

References

Abdullah, K., Jannah, M., Aiman, U., & Hasda, S. (2022). Metodologi Penelitian Kuantitatif. Aceh: Yayasan Penerbit Muhammad Zaini

An, J., Liu, Y., Sun, Y., & Liu, C. (2020). Impact of Work – Family Conflict, Job Stress and Job Satisfaction on Seafarer Performance. International Journal of Environmental Research and Public Health, Vol. 17, No: 7, 2191.

Anggraini, Puspita, F.D., Aprianti, Setyawati, Veria V.A, Hartanto, Angelia, A. (2022). Pembelajaran Statistika Menggunakan Software SPSS untuk Uji Validitas dan Reliabilitas. Jurnal Basicedu, Vol. 6, No: 4, 6491-6504.

Basyaruddin, N. Y., & Danajat, I. (2023). Dasar-Dasar Nautika. Jakarta Selatan : Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi.

Bhastary, M. D. (2020). Pengaruh etika kerja dan stres kerja terhadap kepuasan kerja karyawan. Maneggio: Jurnal Ilmiah Magister Manajemen, Vol. 3 No : 2, 160-170.

Brooks, S. K., & Greenberg, N. (2022). Mental Health and Psychological Wellbeing of Maritime Personnel: A Systematic Review. BMC Psychology, Vol. 10, No: 139.

Dama, M., & Ogi, I. W. (2023). Konflik Kerja-Keluarga dan Kinerja Pelaut: Sebuah Tinjauan Empiris. Jurnal Manajemen Maritim, Vol. 4 No: 2, 75-89.

Diniari, H. R. (2019). Analisis Stres Kerja Akibat Beban Kerja Mental pada Pekerja PT Kerta Rajasa Raya. MTPH Journal, Vol. 3 No. 2, 133–140.

Fauzi, A., Khoerunisa, L., & Utami, A. S. (2024). Peran Motivasi Kerja dan Gaya Kepemimpinan Dalam Meningkatkan Kinerja Karyawan. Jurnal Kewirausahaan dan Multi Talenta (JKMT), Vol. 1 No: 4, 163-172.

Firdaus, F., Soekiman, A., & Hidayat, F. (2024). Faktor-Faktor Penyebab, Tingkat Stres Kerja, dan Dampak Stres Kerja pada Tenaga Kerja Ahli Proyek Konstruksi. Al Qalam: Jurnal Ilmiah Keagamaan dan Kemasyarakatan, Vol. 18 No: 1, 581–601.

Hadijah, Suryana, T., Ardiansyah, Porwanti, T., & Aziz, Abdul, M., (2023). Analisis Pengaruh Kondisi Kerja terhadap Kesejahteraan dan Kinerja Awak Kapal Niaga: Studi Perbandingan Pelayaran Dalam dan Luar Negeri. Jurnal Manajemen Maritim, Vol 25, No: 1, 23–39.

Iba, Z., & Wardhana, A. (2023). Metode Penelitian. Jawa Tengah: CV Eureka Media Aksara.

Jonglertmontree, W., Kaewboonchoo, O., Morioka, I., & Boonyamalik, P. (2022). Mental Health Problems and Their Related Factors among Seafarers: A Scoping Review. BMC Public Health, Vol. 22, No: 282, 1–19.

Komalasari, M., Z, F. M., & Danial, D. M. (2020). Analisis Stres Kerja terhadap Kinerja Karyawan pada CV Kujang Marinas Utama Sukabumi. COSTING: Journal of Economic, Business and Accounting, Vol. 4, No: 1, 301–305.

Kristi, A. A., & Ernawati, S. (2024). Stres Kerja Pada Pegawai Kantor Rehabilitasi Sosial Di Dinas Sosial Kota Surakarta. Jurnal Observasi, Vol. 2, No: 1, 39-48.

Narsih, D., Pamungkas, A. D., & Sari, I. (2024). Stres Kerja dan Produktivitas serta Dampaknya pada Kinerja Karyawan PT. Nico Cipta Karya. Sosio E-Kons, Vol. 16, No: 1, 57.

Oldenburg, M., & Jensen, H.-J. (2019). Stress and Strain among Seafarers Related to the Occupational Groups. International Journal of Environmental Research and Public Health Article, Vol. 16, No: 7, 1153.

Organization, I. L. (2019). Maritime Labour Convention 2006. International Labour Conference.

Pratama, P. (2023). Analisis Penyebab Stres Kerja pada Karyawan Perusahaan Umum Daerah (PERUMDA) Air Minum Way Rilau Bandar Lampung. (Skripsi yang tidak dipublikasikan), Bandar Lampung: Universitas Teknologi Indonesia.

Puryana, P. P., & Fauziah, A. I. (2019). Meningkatkan Kinerja Karyawan Kelurahan Batununggal Melalui Komunikasi Interpersonal. Prosiding FRIMA (Festival Riset Ilmiah Manajemen dan Akuntansi), No: 2, 755–762.

Title 9

Rusilowati, U., & Helmawan, W. (2023). The Impact of Work-Family Conflict and Job Stress on Seafarer Performance. Keberlanjutan: Jurnal Manajemen dan Jurnal Akuntansi, Vol. 8, No: 1, 32–43

Safitri, W. E. K. A. (2023). Analisis Stres Kerja pada Pegawai Puskesmas Sri Bintan. (Skripsi yang tidak dipublikasikan), Tanjungpinang: Sekolah Tinggi Ilmu Ekonomi (STIE).

Sesari, & Rostiana. (2020). Efek Moderator Modal Psikologis dan Komitmen Manajemen dalam Hubungan Stres Kerja dengan Perilaku Keselamatan Kerja. Jurnal Muara Ilmu Sosial, Humaniora, dan Seni, Vol. 4, No: 1, 36–45.

Setyawan, D.A. (2024). Buku Petunjuk Praktikum Uji Validitas dan Reliabilitas Instrumen Pengumpulan Data Menggunakan SPSS. Jurnal Statistik, Hal. 14.

Supangat, & Marsudi, S. (2024). Pentingnya Pengelolaan Stress Management dan Tekanan Pada Para Pelaut untuk Bekerja di Kapal. Jurnal Ilmiah Manajemen Forkamma, Vol. 8, No: 1, 78–86.

Svetina, M., Perkovič, M., Yang, C., Gu, Y., Mindadze, A., Mikeltadze, N., Davitadze, L., & Gabedava, G. (2024). Factors Impacting Seafarers 'Mental Health and Career Intentions. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, Vol. 61, 1-9.

Syahputra, P.A., Fauzi, A., & Wijayanti, M. (2024). Hubungan antara Lingkungan Kerja, Stres Kerja dan Konflik Kerja terhadap Kinerja Karyawan pada PT. XX. Indonesian Journal of Economics and Strategic Management (IJESM), Vol. 2, No. 1, 1152-1155.

Szafran-Dobrowolska, J., Grubman-Nowak, M., Renke, M., & Jeżewska, M. (2023). The Psychosocial Burden and Stress Coping Strategies Among Seafarers. Int Marit Health, Vol. 72, No. 2, 122–128.

Vikaliana, R., Pujianto, A., Mulyati, A., Fika, R., Ronaldo, R., Reza, H. K., Ngii, E., Dwikotjo, F., Suharni, & Ulfa, L. (2022). Ragam Penelitian dengan SPSS. Sukoharjo: Tahta Media Group.

Widiatmaka, F. P., Nasri, Vembriarta, E., & Rahyono, H. (2020). Engine Room Resources Management (ERM). Semarang: Politeknik Pelayaran Semarang.

Wirna, Sapri, Uceng, A., Ahmad, J., & Sahar. (2024). Pengaruh Manajemen Sumber Daya Manusia terhadap Peningkatan Kinerja Pegawai pada Kantor Kecamatan Maiwa Kabupaten Enrekang. Jurnal Ilmiah Pemerintahan Praja, Vol. 10, No: 3, 152-157